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2. Summary 
 
The Radiative Transfer (RT) approach is widely used in applications involving scattering 
from layered random media with rough interfaces (F.T. Ulaby, R.K. Moore and AK Fung, 
Microwave Remote Sensing, Vol. 3, Artech House, 1986). Although this approach involves 
approximations, in most applications they are not explicitly stated or well understood. The 
RT approach for random media with non-scattering boundaries has been well studied (M.I. 
Mishchenko, Appl. Optics, 41, 7114-34, 2002). In contrast our problem has scattering 
boundaries which are randomly rough. In order to better understand the RT approach to 
our problem we adopt a statistical wave approach and then transition to the RT equations. 
The geometry of our problem consists of a multi-layer discrete random medium with rough 
boundaries which are planar on the average. The random medium in each layer consists of 
a homogeneous background medium in which discrete scatterers are randomly distributed. 
The statistical characteristics of the random medium in each layer are independent of each 
other and independent of the statistics describing the rough interfaces. The regions above 
and below the random medium stack are homogeneous. Using the Greens functions of the 
problem without the volumetric fluctuations we represent our problem as a system of 
integral equations. Employing the T-matrix description we first average with respect to 
volumetric fluctuations and then use the Twersky approximation to obtain a system of 
integral equations. We next average with respect to surface fluctuations, apply the weak 
surface correlation approximation and arrive at a closed system of integral equations for 
the first and second moments of the electric fields. We use the Wigner transforms to 
translate the coherence functions to radiant intensities, which are the fundamental 
quantities in the RT approach. On applying the quasi-static field approximation we hence 
arrive at a system of equations identical to those used in the RT approach. From this study 
we learn that there are more conditions involved in the RT approach than widely believed 
to be sufficient.  
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3. Introduction 
 
 
The radiative transfer (RT) theory is widely used in remote sensing problems 
[14,28,20,15,1,30]. Often the model of layered random medium with rough interfaces is 
used. Multiple scattering processes in this structure are well represented by the RT 
equations. Although quite successful in numerous applications in various disciplines, it is 
known that the RT approach involves approximations. Often people in the remote sensing 
community are not quite familiar with the approximations involved in the RT approach 
and hence there has been inappropriate use of the RT approach in the literature. Since the 
phenomenological RT theory [7,27] was first developed for light scattering in planetary 
atmospheres the RT conditions prevalent in the atmospheric context has been popularly 
identified as sufficient conditions for employing the RT theory. However, we notice that 
the RT theory has been used for a variety of different problems [18,24,19,26] in various 
applications with complex geometries. It is not clear whether the classical conditions 
associated with the RT theory are sufficient in all situations. In this paper we will review 
the approximations involved and clarify misconceptions. In order to better understand the 
RT approach we employ the more rigorous statistical wave theory to the problem and 
hence make the transition to the RT equations. In this process we clarify and explain the 
assumptions or approximations involved in the RT approach. By following this procedure 
we found that there are more conditions embedded in the RT approach than widely 
believed to be sufficient. For our study we have considered a multi-layer random medium 
composed of discrete scatterers (see Figure 1). By considering several special cases of 
this general problem we show that the number of conditions implied in the RT approach 
reduces with simpler    geometries. Our conclusions are not just for the case discrete 
random media. We show similar conditions apply for the random continuum as well. 
 
The report is organized as follows. First we describe the geometry of the problem. Next 
we give the radiative transfer approach to the problem. The next section is on the 
statistical wave approach to the problem. This occupies the major part of the paper. It 
deals with the derivation and analysis of the first and second moments of the wave 
functions. A transition is next made to RT equations. Next we enumerate and discuss the 
conditions implied in the RT approach. 
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4. Description of the Problem 
 
The geometry of the problem is shown in Figure 1. We have an N-layer random medium 
stack with rough interfaces which, on the average, are parallel planes. Let jε  be the 
permittivity of the background medium, and let jsε  be the permittivity of the scatterers in 
the j-th layer. The location, orientation, and shape of the scatterers are random functions 
characterizing the fluctuations. We assume the the volumetric fluctuations in each layer 
are statistically independent of each other. Let Nj be the number of scatterers, and let jρ  

be the density of the scatterers (number of scatterers per unit volume) of the j-the layer. 
The permeability of all the layers is that of free space. The randomly rough interfaces are 
given as ( )j jz z ζ ⊥= + r . Then jζ are zero-mean isotropic stationary random processes 
independent of volumetric fluctuations of the problem. Let z0 = 0, and let dj be the 
thickness of the j-th layer. 
 
Let z0 = 0, and let dj be the thickness of the j-th layer. The media above and below the 
stack are homogeneous with parameters jε , k0, and 1Nε + , kN+1, respectively. This system 
is excited by a monochromatic electromagnetic plane wave and we are interested in 
formulating the resulting multiple scattering process. 
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0z

1z

2z

jz

1jz +
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                                     Figure 1. Geometry of the Problem 
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5. Radiative Transfer Approach 
 
Multiple scattering in a complex environment is well described by the radiative transfer 
theory. This theory is not only conceptually simple but also very efficient. The 
fundamental quantity here is the specific intensity I  which is governed by the following 
equation [7,27,10] 
 
ˆ ˆ ˆ ˆ ˆ ˆ( , ) ( , ) ( , ) ( , )s s s s s s dγ ′ ′ ′⋅∇ + = Ω∫I r I r P I r    (1) 

 
One  may regard this equation as a statement of conservation of energy density I which is 
a phase-space quantity at position r  and direction ŝ . γ  is the extinction matrix which is 

a measure of loss of energy due to scattering in other directions. P  is the phase matrix 
representing increase in energy density due to scattering from neighbouring elements. Ω  
is the solid angle subtended by ŝ . Given the statistical characteristics of the medium one 
can calculate the phase function using the single scattering theory for elements that 
constitute the random medium of the layer [31,11,6,17]. The extinction matrix is hence 
calculated using the optical theorem. The specific intensity in each layer is governed by 
an equation similar to (1). Since our layer problem has translational invariance in azimuth 
the RT equation for the m-th layer takes the following form, 

ˆ ˆ ˆ ˆ ˆcos ( , ) ( , ) ( , ) ( , )
m

m m m m m
d z s z s s s z s d
dz

θ γ
Ω

′ ′ ′+ = Ω∫ ∫I I P I    (2) 

  
where the subscript m denotes that the quantity corresponds to  that of the m-th layer and 
θ is the elevation angle of ŝ. This set of RT equations is complemented by a set of 
boundary conditions which is in turn based on energy conservation considerations. To be 
more precise, we impose the condition that the energy flux density at each interface is 
conserved. This leads to the following boundary conditions on the m-th interface 
 

, , , 1 ,ˆ ˆ ˆ ˆ ˆ ˆ ˆ( , ) ( , ) I ( ) ( , ) I ( )u d u
m m m m m m m mz s s s z s d s s z s d+ + +′ ′ ′ ′ ′ ′= Ω + Ω∫ ∫m 1 m 1I R X  (3) 

 
The boundary conditions on the (m-1)-th interface are given as 
 

1 , 1, , 1 1,ˆ ˆ ˆ ˆ ˆ ˆ ˆ( , ) ( , ) I ( ) ( , ) I ( )d u d
m m m m m m m mz s s s z s d s s z s d− − − − − −′ ′ ′ ′ ′ ′= Ω + Ω∫ ∫m 1 m 1I R X  (4) 

     
where mmnnR  and mnX  are the local reflection and transmission Mueller matrices. To be 
more specific, mmnnR  represents the reflection matrix of waves incident from medium n on 
the interface separating medium m and medium n. The superscripts u and d indicate 
whether the intensity corresponds to a wave travelling upwards or downwards. These 
Mueller matrices are often calculated using some asymptotic theory such as the Kirchhoff 
approximation [33,5,30,29]. The integration in these expressions are over a solid angle 
(hemisphere) corresponding to ŝ′ . Suppose we have a time-harmonic electromagnetic 
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plane wave incident on this stack from above. Then the downward travelling intensity in 
Region 0 is 
 

0 0 0 0ˆ( , ) (cos cos ) ( )d
i iz s δ θ θ δ φ φ= − −I B  (5) 

 
where 0B  is the intensity of the incident plane wave and { },i iθ ϕ  describes its direction. 
Since there is no source or scatterer in Region N+1,   
              

1 ˆ( , ) 0u
N z s+ =I  

 
Notice again that these boundary conditions represent conservation of intensity at the 
interfaces. We should point out that the radiative transfer approach as applied to a 
particular problem is only a model based on certain assumptions. Since the RT theory is 
used in a variety of applications, the particular assumptions involved are described in 
terms of different terminologies, specific to the discipline where it is used. One good way 
to understand in more general terms the RT approach and the underlying assumptions is 
to compare it with the more rigorous wave approach. For the case of an unbounded 
random medium this kind of study was carried out in the 1970s [3,2]. From that study we 
learn that the radiative transfer theory can be applied under the following conditions: 

1. Quasi-stationary field approximation 
2. Sparse distribution  
3. Statistical homogeneity of the medium fluctuations 

 
These are the well-known conditions that we associate with the RT approach. However, 
our problem has bounded structures and, further, they are randomly rough. The question 
is this: are the above conditions sufficient to apply the RT approach for our problem? 
This is the motivation for this paper. We follow the wave approach to this problem, 
derive the equations for the intensities, and hence make the transition to the RT 
equations. This procedure enables us to better understand the necessary conditions for 
using the RT approach for our problem. 
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6. Statistical Wave Approach 
     
The following are the equations that govern the waves in the layer structure: 
 

2 1, ,j j j j jk v j N∇×∇× − = =E E E   (6) 
 
where 

ji
1

Q ( )
jN

j
i

v
=

≡∑ r  
(7a) 

 
 

2 2

( )
0 otherwise

js j ji
ji

k k V
Q

 − ∈
= 


r
r  

(7b) 

 
 

2 2 2 2
js js j jk kω µε ω µε= =  (7c) 

 
jiV  is the domain of the i-th scatterer and jN  is the number of scatterers in layer j. Thus 

jv  represents the volumetric fluctuations in Region j. For the homogeneous regions 
above and below we have 
 

2
0 0 0 0k∇×∇× − =E E  (8a) 

 
2

1 1 1 0N N Nk+ + +∇×∇× − =E E  (8b) 
 
The boundary conditions at the j-th interface are 
 

1ˆ ˆ( , ) ( , )j j j jζ ζ⊥ + ⊥× = ×n E r n E r  (9a) 
 

1ˆ ˆ( , ) ( , )j j j jζ ζ⊥ + ⊥×∇× = ×∇×n E r n E r  (9b) 
 
where n̂  is the unit vector normal to the j-th interface with  normal pointing into the 
medium j. This system is complemented by the radiation conditions well away from the 
stack. We assume that we know the solution to the problem without volumetric 
fluctuations, and denote it as E


. Let the Green's functions to this problem be denoted as 

ijG


 
These Green's functions are governed by the following set of equations: 
 

2( , ) ( , ) ( )jk j jk jkk δ δ′ ′ ′∇×∇× − = −G r r G r r I r r
 

 (10a) 
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( 1)ˆ ˆ( , ; ) ( , ; )jk j j k jζ ζ⊥ + ⊥′ ′× = ×n G r r n G r r
 

 (10b) 

 
 

( 1)ˆ ˆ( , ; ) ( , ; )jk j j k jζ ζ⊥ + ⊥′ ′×∇× = ×∇×n G r r n G r r
 

 (10c) 

 
         

where I  is unit dyad. The boundary conditions above are for the j-th interface. Similarly 
on the (j-1)-th interface we have the following boundary conditions. 
 

1 ( 1) 1ˆ ˆ( , ; ) ( , ; )jk j j k jζ ζ⊥ − − ⊥ −′ ′× = ×n G r r n G r r
 

 (11a) 

 
 

1 ( 1) 1ˆ ˆ( , ; ) ( , ; )jk j j k jζ ζ⊥ − − ⊥ −′ ′×∇× = ×∇×n G r r n G r r
 

 (11b) 

 
     
Using these Green's functions and the radiation conditions the wave functions can be 
represented as 
 

1
( ) ( ) ( , ) ( ) ( ) 0,1, , 1

k

N

j j jk k k
k

v d j N
Ω

=

′ ′ ′ ′= + = +∑∫E r E r G r r r E r r


  
(12) 

 
 
where { }1;k k kzζ ζ⊥ −′ ′Ω = < <r . Note that 0 1 0Nv v += = . 
 
 
In order to carry out multiple scattering analysis with a distribution of discrete scatterers 
it is convenient to employ the concept of transition operator T [13,34,32].  Suppose we 
know the electric field lE incident on the l-th scatterer. We introduce the transition 
operator lT   such that the electric field scattered by the l-th scatterer is given as l lT E . 
Using this concept (12) may be expressed as 
 

1 1
( ) ( ) ( , ) ( , ) ( ) 0,1, , 1

k

k k

NN
l l

j j jk k k
k l

dr dr j N
Ω Ω

= =

′ ′′ ′ ′ ′′ ′′= + = +∑∑∫ ∫E r E r G r r T r r E r


  
 

  (13) 
 

Note that l
kT  depends only on the l-th scatterer. To proceed further with the multiple 

scattering analysis it is expedient to use symbolic representation of (13). 
l l

j j jk k k= +E E G T E


 (14) 

 
First we average (14) w.r.t. volumetric fluctuations to get 
 

l l
j j jk k kv v

= +E E G T E


 (15) 
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where the subscript v  denotes volumetric averaging. Since there are kN  scatterers in the 
k-th layer 
 

1 2 1 2( , , , ; , , , )
k k

l l l l
k k k k N Nv

p d d= ∫T E T E r r r s s s r s   (16) 

 

where p is the joint probability density function of finding the scatterers at 1 2, , ,
kNr r r

with orientations 1 2, , ,
kNs s s . We assume that the positions and orientations are 

independent of each other. In other words 
 

1 2 1 2 1 2 1 2( , , , ; , , , ) ( , , , ) ( , , , )
k k k kN N N Np p p=r r r s s s r r r s s s     (17) 

 

Furthermore, assume that the orientation of the particle at position 1r  is independent of 
the orientation of all other particles, which means 
 

1 2
1

( , , , ) ( )
k

k

N

N j
j

p p
=

=∑s s s s  
(18) 

 
We next express the joint position probability density function as 
 

1 2 1 2( , , , ) ( , , , , , ) ( )
k kN l N l lp p p′=r r r r r r r r r    (19) 

 

where 1 2( , , , , , | )
kl N lp ′r r r r r   is the conditional pdf of finding scatterers at 1 2, , ,

kNr r r

by fixing the l-th scatterer is at lr . The prime in l
′r  denotes that lr  should be omitted in 

the argument list of the conditional probability density function. Substituting this relation 
in (16) we obtain 
 

ll l l l
k k k k=T E T E  (20) 

 
where 

ll
kE  denotes conditional average with scatterer l fixed at lr . If Nk is large and the 

distance between scatterers is large then we can approximate 
 

ll l
k kE E  (21) 

 
This is called the Foldy's approximation and is applicable for sparse media.  Under this 
approximation (15) becomes 
 

j j k jk k k vv
ρ+E E G T E


  (22) 
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where kρ   is the density of the scatterers in layer k. Now operate the above equation by 
2
jk∇×∇× −I I  to obtain 

 
 

2
k j k j j jv v v

k ρ∇×∇× − =E E T E  (23) 

 
Next average this over surface fluctuations to get 
 

2
j j j j j jvs vs vs

k ρ∇×∇× − =E E T E  (24) 

Note that the transition operators are independent of surface fluctuations. From this we 
see that 
 

2 0 0, 1j j jvs vs
k j N∇×∇× − = = +E E  (25) 

 
which means that the coherent propagation constants in the regions above and below the 
layered stack are unaffected by the fluctuations of the problem. However they indeed get 
modified in the layered stack region. On writing (24) as 
 

{ }2 0j j j j vs
k ρ∇×∇× − − =I T E  (26) 

 

we infer that 2
j j j jkχ ρ= + T  represents the mean propagation constant, in operator 

form, for coherent waves in layer j. 
 
Since the problem is statistically homogeneous in azimuth the mean fields in our system 
have the following form: 
 
 

( ) exp( )p
j ivs

i ⊥= ⋅E r k r  
 

{ }( ) exp ( ) expp p p p
j i j j i jA iq z B iq z+ −

⊥ ⊥   + −   k p k p 1, 2, ,j N= 
 

(27) 

 
     

{ }0 0 0 0 0( ) exp( ) exp ( ) expp p p p
i zi i zivs

i ik z R ik z− +
⊥ ⊥   = ⋅ − +   E r k r p k p  

                
(28) 

 

1 1 ( 1)( ) exp( ) ( ) expp p p
N i i N N zivs

i X ik z−
+ ⊥ ⊥ + + = ⋅ − E r k r k p                           (29) 

 
where the superscript p stands for the polarization, either horizontal or vertical. p  is the 
unit vector representing polarization. jq is the z-component of jχ . The subscript i is used 
to indicate that the wave vector is in the incident direction. R and X denote respectively 
the mean reflection and transmission coefficient of the stack. jA and jB  denote 
respectively the mean coefficients of up-going and down-going waves in the j-th layer. 
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Based on this we can formulate the waves averaged w.r.t. volumetric fluctuations as 
 

{ }2

1( ) exp( ) ( , ) e ( , ) e
4

j jiq z iq zp pq pq
j j i j j i jv

d i A q B q
π

−+ −
⊥ ⊥ ⊥ ⊥ ⊥ ⊥= ⋅ +∫E r k k r k k k k

    
 

 
(30) 

[ ] [ ]0 0 0 0 02

1( ) exp( )exp exp( ) ( , ) exp
4

p pq
zi i zv

i ik z i R q ik z d
π

− +
⊥ ⊥ ⊥ ⊥= ⋅ − + ⋅∫E r k r p k r k k k

 

 
(31) 

 
and 

1 1 ( 1)2

1( ) exp( ) ( , ) exp
4

p pq
N i N N zv

i X q ik z d
π

−
+ ⊥ ⊥ ⊥ + + ⊥ = ⋅ − ∫E r k r k k k

 

 
                                (32) 

 

                                                              

where jA , jB , R  and X  are now integral operators representing scattering from rough 
interfaces. The boundary conditions associated with the above equations at the j-th 
interface are 
 

1ˆ ˆ( , ) ( , ) 1, 2, ,j j j jv v
j Nζ ζ⊥ + ⊥× = × =n E r n E r 

 

                        
(33) 

 
and 

1ˆ ˆ( , ) ( , ) 1, 2, ,j j j jv v
j Nζ ζ⊥ + ⊥×∇× = ×∇× =n E r n E r   

                         
(34) 

   
The above system may be solved either numerically or by any one of the asymptotic 
methods available in rough surface scattering theory [5,4,33] to evaluate the mean 
coefficients that appear in (27)-(29). 
 
We proceed now to the analysis of the second moments, by starting with (12). For 
convenience we write it in symbolic form as 
 

1

N
l l

j j jk k k
k=

= +∑E E G T E


 
(35) 

         
We take the tensor product of this equation with its complex conjugate and average w.r.t. 
volumetric fluctuations and obtain 
 

* * * *

1 1 1 1

k kN NN N
l l

j j j j jk jk kk ll k kv vv v v
k k l l

′
′

′ ′ ′
′ ′= = = =

⊗ = ⊗ + ⊗ ⊗∑ ∑ ∑ ∑E E E E G G K E E  
 

     
(36) 
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where K  is the intensity operator of the volumetric fluctuations. Employing the weak 
fluctuation approximation we approximate K  by its leading term 
 

*l l
kk ll k k kk llδ δ′
′ ′ ′ ′⊗K T T I  (37) 

 
 
On substituting this in (36) we get, 
 

* * * * *

1

N

j j j j k jk jk k k k kv vv v v v
k

ρ
=

⊗ = ⊗ + ⊗ ⊗ ⊗∑E E E E G G T T E E  
(38) 

 
Next we average (38) w.r.t. the surface fluctuations to get 
 

* * * * *

1

N

j j j j k jk jk k k k kv vvs v v vss sk
ρ

=

⊗ = ⊗ + ⊗ ⊗ ⊗∑E E E E G G T T E E  
(39) 

where we have used the following approximation 
 

* * * * * *
jk jk k k k k jk jk k k k kv vv v v vss s

⊗ ⊗ ⊗ ⊗ ⊗ ⊗G G T T E E G G T T E E  (40) 

 
 
We call this the ‘weak surface correlation’ approximation, which we will see later to be 
an important condition embedded in the RT approach to our problem. 
 
As it stands this equation is very difficult to solve either analytically or numerically. 
Besides, one important goal for us is to investigate the conditions needed for employing 
the radiative transfer approach for our problem. With these in mind we introduce Wigner 
transforms. Note that (39) is an equation for the coherence function which is a ‘space-
space’ quantity. On the other hand the RT equation, as we saw earlier, is an equation for 
the specific intensity which is a ‘phase-space’ quantity. Wigner transforms serve as a 
bridge to link these two quantities [35,8,16,22]. 
 
We introduce Wigner transforms of waves and Green's functions as 

( ) ( ) [ ]*, exp ( ) ( )
2m m mv vs

ik dε
′+  ′ ′ ′= ⊗ − ⋅ − − 

  ∫
r r k E r E r r r r r  

 
(41a) 

 
 

( ) ( ) [ ]*, exp ( ) ( )
2

s
m m mv s

ik dε
′+  ′ ′ ′= ⊗ − ⋅ − − 

  ∫
r r k E r E r r r r r  

 
               (41b) 

 

1 1( )( ) *1 1
1 1 1 1, | ,1 ( ) ( ) e e ( , ) ( , )

2 2
ii

mn mn mnv v s
d d ′′ ⋅ −− ⋅ −′′ ++  ′ ′ ′ ′= − − ⊗ 

  ∫ ∫ l r rk r rr rr r k r r r r G r r G r rG  
  

                                                                                                                                                    (42)   

   



13 
Approved for public release; distribution is unlimited. 

In terms of these transforms (39) becomes 

( ) ( ) ( )4
1

4, , , | , ( , | , ) ( , )
(2 )

n

N
s

m m n mn n n
n

d d dρ β β
π = Ω

′ ′ ′ ′′ ′′= + ∑ ∫ ∫ ∫r k r k r α β r k r α r α r rE E G ET  
 

(43) 

 
with 
 

{ } ( ) ( )1 2 1 2*
1 2 1 2 1 2 1 2 1 22 2 2 2( , | , ) exp , ,n d d i i= − ⋅ + ⋅ + + ⊗ − −∫ ∫ r r r rR α R β r r α r β r T R R T R RT

 (44) 
  

   

   
 

where T is the element transition operator in n-th layer. 
 
 
The fact that our problem has translational invariance in azimuth implies the following: 
 
 

( ) ( ), ,m m z=r k kE E
 

 
 

                                                                  (45a) 

 

( ) ( ), | , , | , ;mn mn z z ⊥ ⊥′ ′ ′= −r k r l k l r rG G                                                                 (45b) 
 
Using these relations in (43) we have 
 
 

( ) ( ) ( )1

4
1

4, , , | , ;0 ( , ) ( , )
(2 )

n

n

N zs
m m n mn n nz

n
z z dz d d z z zρ β β

π
−

=

′ ′ ′= + ∑ ∫ ∫ ∫k k α β k α αE E G F E  
 
 

(46) 
 
where 
 

( ) ( ), | , ;0 , | , ; ( )mn mnz z z z d⊥ ⊥ ⊥ ⊥′ ′ ′ ′= − −∫k α k α r r r rG G   (47) 

 
 
 

*( , ) ( , ) ( , )n β β β= ⊗α f α f αF    (48) 

f  is the element scattering matrix in the n-th layer. Since the medium is assumed to be 
sparse inter-particle scattering takes place in the far-field zone of each other. It is based 
on this fact that we have transitioned from nT  to nF . Also we have employed the on-shell 
approximation to nT . 
 
To proceed further we need to evaluate mnG . Further we need to relate this system with 
that of RT, which involves the boundary conditions at the interfaces. Therefore we need 
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to identify the coherence functions corresponding to up- and down-going wave functions. 
To facilitate this we decompose mn v

G into its components, 
 

0 uu ud du dd
mn mn m mn mn mn mnv

δ= + + + +G G G G G G     (49) 

 
where the first term is the singular part of the Green's function. The superscripts u and d 
indicate up- and down-going elements of the waves. The other components are due to 
reflections from boundaries. These are formally constructed using the concept of surface 
scattering operators as follows [33], 
 

4

1(
(2 )

ab
mn v

µν

π
′ =G r,r  

 

{ } { } { }( , ) exp ( ) exp ( )ab
mn m nd d S i iaq z i ibq z

µν µ ν
⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥′ ′ ′ ′ ′ ′⋅ + − ⋅ −∫ ∫k k k k k r k k r k

 
(50) 

 

where ab
mnS  is the surface scattering operator. The superscripts a and b on S are used to 

indicate whether the waves are up-going or down-going. In the exponents, a,b=1 if the 
waves are up-going. We let a, b=-1 if the waves are down-going. The z-component of the 
mean propagation constants in the n-th layer is denoted as nq . We recall that mnF  is the 

Wigner transform of *
mn mnv v s

⊗G G . The superscripts ,µ ν  stand for polarization, 

either h or v. When we use (34) to perform the Wigner transform we ignore all cross 
terms. In other words, we make the following approximation, 
 

0 uu ud du dd
mn mn m mn mn mn mnδ= + + + +G G G G G G  (51) 

 

where ab
mnG  is the Wigner transform of *ab ab

mn mnv v s
⊗G G . This approximation reminds 

us of the concept of incoherent addition of intensities associated with the 
phenomenological radiative transfer theory. 
  
 
With the introduction of this representation for mnG  in (43) we can trace up- and down-
going waves to obtain the following equations for the coherence function: 
 

( ) ( ), ,u su
m mz z=k kE E   

( )4

4 , | , ;0 ( , ) ( , )
(2 ) m

z ua a
m m m mz

dz d d z z zρ β β
π

>′ ′ ′+ ϒ∫ ∫ ∫α β k α αG E
 

 

( )1

4
1

4 , | , ;0 ( , ) ( , )
(2 )

n

n

N z ua ab b
n mn m nz

n
dz d d z z zρ β β

π
−

=

′ ′ ′+ ϒ∑ ∫ ∫ ∫α β k α αG E
 

(52a) 

 
 

( ) ( ), ,d sd
m mz z=k kE E  
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( )1

4

4 , | , ;0 ( , ) ( , )
(2 )

mz da a
m m m mz

dz d d z z zρ β β
π

− <′ ′ ′+ ϒ∫ ∫ ∫α β k α αG E
 

 

( )1

4
1

4 , | , ;0 ( , ) ( , )
(2 )

n

n

N z da ab b
n mn n nz

n
dz d d z z zρ β β

π
−

=

′ ′ ′+ ϒ∑ ∫ ∫ ∫α β k α αG E
 

(52b) 

 
 

Note that summation over { }, ,a b u d=  is implied in the above equations. The first term 

in these equations, saε , represents the contribution due exclusively to surface scattering, 
and has the following form: 

{ } ( )* *1( , ) 2 ( ) ( ) exp
2

sa
m z m m m mz k a q q ia q q z

µν µ ν µ νε πδ ⊥ ⊥
    = − + −     

k k k  
 

{ } { }* *( , )a a
m m i i i

s
E E

µµ νν

µ ν

′ ′

′ ′⊥ ⊥Σ Σ k k
 

(53) 

 

where a
mΣ is the amplitude of the up-going wave in the m-th layer after volumetric 

averaging is performed. This means that it is a random function of surface fluctuations. 
When we substitute (53) and the expressions for mnℑ  in (52) we find that 
 

{ } ( ) { }* *1( , ) 2 ( ) ( ) exp ( , )
2

a a
m z m m m m mz k a q q ia q q z zµ ν µ ν

µν µν
πδ ⊥ ⊥ ⊥

    = − + −     
k k k kE E  

 
(54) 

 
On substituting this in (52) and differentiating w.r.t. z we obtain the following transport 
equations: 
 

*( ) ( ) ( , )u
u

d i q q z
dz ν µν⊥ ⊥ ⊥

  − − =   
k k kE  

 

           
( ) ( )*4 m d S Sµ νρ > >

⊥ ⊥⊥
= ⊗∫ α α α

                                      (55a)
* *

;
1 1, ( ) ( ) ; , ( ) ( ) ( , )
2 2

ua aq q a q q zµν µ ν µ ν µ ν µ ν′ ′ ′ ′ ′ ′⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
    + +     
k k k α α α αF E

 

 

  
 

where summation over a is implied. When the superscript a corresponds to u the value of 
a in the argument of mγ  take the value +1; on the other hand when the superscript a 

*( ) ( ) ( , )d
u

d i q q z
dz ν µνε⊥ ⊥ ⊥

  − − − =   
k k k  

 

             
( ) ( )*4 m d S Sµ νρ < <

⊥ ⊥⊥
= ⊗∫ α α α

 
 

          

* *
;

1 1, ( ) ( ) ; , ( ) ( ) ( , )
2 2

ua aq q a q q zµν µ ν µ ν µ ν µ ν′ ′ ′ ′ ′ ′⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
    − + +     
k k k α α α αF E  

(55b) 
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corresponds to d the value of a in the argument of mγ take the value -1. Since all 
quantities in (55) correspond to the same layer m we have dropped the subscript m in γ  
and ε to avoid cumbersome notations. To obtain appropriate boundary conditions we 
have to go back to the integral equation representations for u

µνε  and d
µνε , examine their 

behavior at the interfaces, and seek a relation between them. After considerable effort we 
managed to arrive at the following boundary conditions. At the (m-1)-th interface we 
have 
 

1 1, 1( , ) ( , ) ( , )d u
m m m m m mz z d− ⊥ − ⊥ ⊥ − ⊥ ⊥′ ′ ′= ℜ∫k k k k kE E  (56) 

with *ℜ = ⊗R R   where 1,m m−R  is the stack reflection matrix (not the local reflection 
matrix) for a wave incident from below on the (m-1)-th interface. Similarly 

1 1, 1( , ) ( , ) ( , )u d
m m m m m mz z d− ⊥ + ⊥ ⊥ − ⊥ ⊥′ ′ ′= ℜ∫k k k k kE E  (57) 

 

where 1,m m+ℜ  is the tensor product of stack reflection matrix for a wave incident from 
above on the (m-1)-th interface. We were able to obtain the boundary conditions only 
after imposing certain approximations such as the one given below. Consider the 
following identity: 
 

{ }1,
du uu
mm m m m m mm m

>
−= +S D R S S D  (58) 

 

where { }diag exp( ),exp( )m h m v miq d iq d=D . Notice that this is an operator relation where 
all elements are operators. Taking the tensor product of (58) with its complex conjugate 
we have 

( )* * *
1, 1,( )du du

mm mm m m m m m m− −⊗ = ⊗ ⊗S S D D R R   
 

{ } { } ( )* *uu uu
m mm m mm m m
> > + ⊗ + ⊗  

S S S S D D
 

(59) 

 
Next we average (59) w.r.t. surface fluctuations and get  
 

* * *
1, 1,( )du du

mm mm m m m m m m− −⊗ ⊗ ⊗S S D D R R   
 

{ } { } ( )* *uu uu
m mm m mm m m
> >+ ⊗ + ⊗S S S S D D

 
(60) 

 
where we have approximated that the two tensor products in the middle are weakly 
correlated. A further approximation that we impose is given as follows: 
 

{ } { }* * *uu uu uu uu
m mm m mm m m mm mm
> > > >+ ⊗ + ⊗ + ⊗S S S S S S S S

 
(61) 

 
These are the kinds of approximations required to arrive at our boundary conditions. 
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7. Transition to Radiative Transfer 
 
Next we have to transition from this transport equation (55) to the phenomenological 
radiative transfer equation discussed earlier. To accomplish this we have to link the key 
quantities of waves and radiative transfer, viz., coherence function and specific intensity. 
The relation between them is obtained by computing the energy density using the two 
concepts. Thus we have 

*1 ˆ( ) ( ) ( , )
2 sE E I s dµ ν µνε µε= Ω∫r r r

 

(62) 

 
Wigner transform provides us following relation: 
 

*
2

1( ) ( ) ( , )
(2 )

E E z dµ ν µνπ ⊥ ⊥= ∫r r k kE
 

(63) 

 
From (62) and (63) we relate I  to ε as 
 

2

2

1ˆ( , ) cos ( , )
2 (2 )

kI z s zµν µνθε
η π ⊥

′
= k

 

(64) 

 
Now we can transition to the phenomenological RT equations. Using the relation 
between E  and I  we change the integration variable to solid angle and arrive at the 
following equation, 

( ) ( ){ }ˆ ˆ ˆcos ( , ) , ( , ) , ( , )u uu u ud d
ij j ij j ij j

d I z s P I z s P I z s d
dz

θ η  ′ ′ ′ ′ ′+ = Ω Ω + Ω Ω Ω 
  ∫  

 
(65a) 

 
 

( ) ( ){ }ˆ ˆ ˆcos ( , ) , ( , ) , ( , )d du u dd d
ij j ij j ij j

d I z s P I z s P I z s d
dz

θ η  ′ ′ ′ ′ ′− + = Ω Ω + Ω Ω Ω 
  ∫  

 
(65b) 

 

where η  is the extinction matrix and P  is the phase matrix. Implicit summation over 
subscript j is assumed in (65). To facilitate comparison with the results of Ulaby et al. 
[30], and Lam and Ishimaru [12] we have used a modified version of Stokes vector [10]. 
Instead of the standard form { }, , ,I Q U V we use{ }( ) 2, ( ) 2, ,I Q I Q U V+ − . The 
subscript of I  denotes the element number of our modified Stokes vector. Although the 
structure of this equation is identical to that of the RT (equation (2)), the elements of the 
phase matrix and the extinction matrices are not the same. The primary reason is because 
of the differences in the real part of the mean propagation constants of horizontally and 
vertically polarized waves. On assuming that h v mzq q k′ ′ ′= =  we obtain the following 
expressions for the extinction and phase matrices: 
 

{ }cos diag 2 , 2 , ,v h v h v hq q q q q qη θ ′′ ′′ ′′ ′′ ′′ ′′= − + +
 

(66) 
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{ }( , ) , cos ; , cosab
ij ijP ak bkθ θ⊥ ⊥′ ′ ′Ω Ω = k kP

 
(67) 

 
  

where 

 
We have suppressed the arguments for brevity. For instance, 

{ }13 , cos ; , cosak bkθ θ⊥ ⊥′ ′k kP   

( ) ( ){ }*Re , cos ; , cos , cos ; , cosvv vhf ak bk f ak bkθ θ θ θ⊥ ⊥ ⊥ ⊥′ ′ ′ ′= k k k k
 

 
(69) 

 
 
Note that these transport equations (65) are identical to those of classical RT equations 
(2) that we described in Section 2. Thanks to our statistical wave approach we now have 
explicit expressions for the extinction matrix and phase matrix in terms of the statistical 
parameters of the problem. Let us now next turn our attention to the boundary conditions 
(BC).  In our wave approach we obtained BCs in terms of `stack' reflection matrix R , 
whereas in the RT approach the BCs are given in terms of the local interface reflection 
matrices. We can readily reconcile with this apparent difference. Note that the BC in the 
wave approach forms a closed system whereas in the RT approach it is open (linked to 
adjacent layer intensities). Let us take a look at the BC at the (m-1)-th interface. 2,m m−R  
can be expressed in terms of 2, 1m m− −R as follows, 
 

1

1, 1, , 1 2, 1 1 , 1 2, 1 1 1,m m m m m m m m m m m m m m m m

−

− − − − − − − − − − −
 = + − R R T I R D R R D T  

 
 

(70) 
 

This is the relation between the stack reflection coefficients of adjacent interfaces. The R  
and T  are local (single interface) reflection and transmission matrices at the (m-1)-th 
interface. On operating u

mE  with (70) we get 
 

2
11 vvf=P

 

2
12 vhf=P  

*
13 Re( )vv vhf f=P  *

14 Im( )vv vhf f= −P   

2
21 hvf=P  

2
22 hhf=P  

*
23 Re( )hv hhf f=P  *

24 Im( )hv hhf f= −P   

*
31 2 Re( )vv hvf f=P  *

32 2 Re( )vh hhf f=P  *
33 2 Re( )vv hhf f=P  *

34 Im( )vv hhf f= −P   

   *Re( )vh hvf f+
 

 

*
41 2 Im( )vv hvf f=P  *

42 2 Im( )vh hhf f=P  *
43 Im( )vv hhf f=P  *

44 Re( )vv hhf f=P   

  *Im( )vh hvf f+
 

*Re( )vh hvf f−
 

(68) 
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1, , 1 1
d u d
m m m m m m m− − −= +Ε R Ε T Ε   

(71) 
 
Notice that this boundary condition now involves only local interface Fresnel 
coefficients. Take the tensor product of (71) with its complex conjugate and average 
w.r.t. surface fluctuations. Employing the Wigner transform operator on this, we obtain a 
boundary condition at the (m-1)-th interface similar to that of the RT system. However, 
the reflection and transmission matrices used in the RT system correspond to unperturbed 
medium as opposed to the average medium as in the case of the wave approach. 
 
 

Similarly we write 1,m m+R  in terms of 2, 1m m+ +R  and hence obtain the BC at the m-th 
interface as 

1, , 1 1
u d u
m m m m m m m+ + += +Ε R Ε T Ε  (72) 

 
Take the tensor product of (71) with its complex conjugate and average w.r.t. surface 
fluctuations. Employing the Wigner transform operator on this, we obtain boundary 
condition at the m-th interface identical to (3) (after making the approximation as before). 
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8. Discussion 
 
Now that we have made the transition from statistical wave theory to radiative transfer 
theory it is instructive to itemize the assumptions implicitly involved in the RT approach: 

1. Quasi-stationary field approximation 
2. Sparse distribution of scatterers 

These are the well-known conditions necessary for the unbounded random medium 
problem. However, if the medium is bounded we need to impose additional conditions. 
We found that the extinction coefficients calculated in the wave approach and the RT 
approach are different and only after applying further approximations can they be made 
to agree with each other. The following additional condition is required for our bounded 
random medium problem: 

3. Layer thickness must be of the same order or greater than the corresponding mean 
free path. 

When the interfaces are randomly rough we need the following additional conditions. 
4. Weak surface correlation approximation. 
5. All fluctuations of the problem are statistically independent of each other. 

 
Recently Mishchenko et al. [17] (hereafter referred to as MTL for brevity) derived the 
vector radiative transfer equation (VRTE) for a bounded discrete random medium using a 
rigorous microphysical approach. This enabled them to identify the following 
assumptions embedded in the VRTE.  

1. Scattering medium is illuminated by a plane wave.  
2. Each particle is located in the far field zone of all other particles and the 

observation point is also located in the far field zones of all the particles forming 
the scattering medium. 

3. Neglect all scattering paths going through a particle two or more times (Twersky 
approximation). 

4. Assume that the scattering system is ergodic and averaging over time can be 
replaced by averaging over particle positions and states. 

5. Assume that (i) the position and state of each particle are statistically independent 
of each other and those of all other particles and (ii) spatial distribution of the 
particles throughout the medium is random and statistically uniform. 

6. Assume that the scattering medium is convex. 
7. Assume that the number of particles N forming the scattering medium is very 

large. 
8. Ignore all the diagrams with crossing connections in the diagrammatic expansion 

of the coherency dyadic. 
 
Below we make a connection between the two by considering each condition derived by 
MTL and relating it to ours. We will denote the condition numbers derived by MTL as 
MTL # and those obtained in this paper as SM # 

• MTL 1:- We also have a plane electromagnetic wave illuminating our system, 
although as pointed out by MTL it can be a quasi-plane wave. 
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• MTL 2:- We also have implicitly employed the far field approximation. It is 
embedded in SM 1 and SM 2. 

• MTL 3:- This is embedded in SM 2. Although not explicitly stated, the scattering 
processes as mentioned in MTL 3 are avoided. This is identical to the Foldy's 
approximation use in this paper. 

• MTL 4:- In our paper we have restricted our attention to the time-independent 
problem and hence did not encounter the issue of ergodicity. 

• MTL 5:- We have also employed this assumption although we did not itemize 
this as a condition. 

• MTL 6:- In our problem we have distinct scattering boundaries and the character 
of the waves exiting or entering them are explicitly contained in the boundary 
conditions. Hence convexity of the scattering medium is not a necessary condition 
for us. 

• MTL 7:- This condition is embedded in SM 3. 
• MTL 8:- This condition is embedded in SM 2. Under sparse medium conditions 

we only take into consideration the leading term of the intensity operator. 
 
Since the problem we considered in this report involves scattering boundaries we have 
some additional conditions beyond those of MTL. There are a few more remarks that we 
would like to make before closing. (a) In RT theory the medium is assumed to be sparse 
and hence the “refraction effects” of the fluctuations are ignored. Thus in the boundary 
conditions we should use the background medium parameters rather than the effective 
medium parameters as derived in our statistical wave theory. (b) To arrive at (50) from 
(49) we have ignored the contribution of evanescent modes. 
 
To summarize, we have enquired into the assumptions involved in adopting the radiative 
transfer approach to scattering from layered random media with rough interfaces. To 
facilitate this enquiry we adopted a wave approach to this problem and derived the 
governing equations for the first and second moments of the wave fields. We employed 
Wigner transforms and transitioned to the system corresponding to that of radiative 
transfer approach. In this process we found that there are more conditions implicitly 
involved in the RT approach to this problem than it is widely believed to be sufficient. 
With the recent development of fast and efficient algorithms for scattering computations 
and the enormous increase in computer resources it is now feasible to take an entirely 
numerical approach to this problem without imposing any approximations. 
 
In spite of such developments, to keep the size of the problem manageable only special 
cases have been studied thus far [9,23,21,25]. Hence it is very much of relevance, interest 
and convenience to apply the RT approach to these problems. However, one should keep 
in mind the assumptions involved in such an approach. Otherwise interpretations of 
results based on RT theory can be misleading. 
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